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Abstract. We discuss physics motivations related to hyperdeformed nuclei and more generally large nuclear
deformations at high angular momenta. Possible reasons for the experimental difficulties encountered so far
are discussed together with suggestions related to the new setting of priorities that combine our present-day
knowledge about the behavior of hot nuclei, in particular, the Jacobi transitions, and the hyperdeformed-
shell structures.

PACS. 21.60.-n Nuclear structure models and methods – 21.90.+f Other topics in nuclear structure

1 Introduction

Large-scale microscopic calculations of the nuclear po-
tential energy surfaces predicted systematically the ex-
istence of superdeformed and hyperdeformed configura-
tions at high angular momenta. The existence in nature
of the high-spin nuclear superdeformation has been in the
meantime well established experimentally in terms of dis-
crete transitions and hundreds of superdeformed bands
have been observed in nuclei in various mass ranges begin-
ning with relatively light ones, A ∼ 40, through medium
heavy, A ∼ 80, A ∼ 130 and A ∼ 150, up to the heaviest
ones, mercury range, A ∼ 180. The very large deforma-
tions associated with the so-called secondary minima in
the actinide nuclei have been known for many years be-
fore the first superdeformed band in the 152Dy nucleus [1]
had been observed in 1986 (cf. fig. 1).

The high-spin hyperdeformed discrete nuclear states
have never been seen so far in experiment although the
corresponding theoretical predictions have been obtained
within the same formalism that was successful in pre-
dicting and interpreting the superdeformed structures. In
particular, already in 1987, i.e. when just a few superde-
formed nuclei were known experimentally it has been rec-
ognized [2] that the pseudo-SU3 symmetry of the nuclear
mean field implies the existence of the whole abundance
scheme for nuclear superdeformation. The experimental
results known today confirm to the full extent the sys-
tematic appearance of the superdeformed-shell closures
implied by the pseudo-SU3 symmetry of the mean field,
figs. 1 and 2 in the above reference. (For earlier reviews
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related to superdeformation cf., e.g., refs. [3–5]; for the
early discussion related to nuclear stability in terms of
the harmonic-oscillator properties —ref. [6]. For an exten-
sive survey of the present-day information about nuclear
superdeformation the reader is referred to the compila-
tion [7] where both an overview of the experimental re-
sults as well as an extensive list of the published articles on
the subject can be found.) More precisely, introducing the
main-shell quantum number N and the related (pseudo-

SU3) quantum numbers Ñ = N − 1 and ñz = nz, where

ñz = 0, 1, . . . Ñ , one can easily recognize in any realis-
tic nuclear mean-field spectra the characteristic pattern
of mutually crossing multiplets. An approximate pseudo-
SU3 symmetry implies approximate (2s+1) (Ñ − ñz +1)
degeneracies in the single-particle energies that produce
in turn a characteristic pattern of increased level-density
areas separated by the low level-density areas (gaps) and
provide an excellent parameterisation of the today known
abundance of the nuclear high-spin superdeformation (cf.,
e.g., figs. 1 and 2 in ref. [2] and references therein).

2 Fifteen years of superdeformation studies

Before discussing in more detail the physics motivation
and expected research directions related to the hyperde-
formation, let us try to summarize briefly what appears
to represent the most important achievements in the su-
perdeformation studies. Of course, there is no place here to
overview the evolution that lead to our present-day under-
standing of superdeformed nuclei. The reader is referred
to other publications on the subject, e.g., those cited in
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Fig. 1. The superdeformed nucleus 152Dy, according to the
measurements of ref. [8] has the quadrupole moment Q2 = 17.2
eb. The corresponding deformation α20 = 0.61 and α40 = 0.11
obtained, e.g., from the calculations with the Woods-Saxon
potential as in ref. [9] reproduces the measured dynamical mo-
ments and the quadrupole moment. The shape presented in
the figure corresponds to the above deformation.

the introduction. Below, just a few selected aspects will
be mentioned that we consider particularly relevant also
in the hyperdeformation context.

2.1 Realistic mean fields are not harmonic oscillators

Let us begin by recalling first these expectations that
the superdeformation studies did not confirm. First of
all, the realistic calculations such as deformed Woods-
Saxon, self-consistent Hartree-Fock or Relativistic-Mean-
Field models show repeatedly the non-applicability of the
harmonic-oscillator approximation in the analyses of the
large deformation, especially at high spins. Such a con-
clusion can be drawn when analyzing the structure of the
single-nucleonic wave functions in terms of the deformed
harmonic-oscillator basis

ψ(n)(r) =
∑

N,nz,`z,sz

a
(n)
N,nz,`z,sz

ϕN,nz,`z,sz
(r), (1)

where ψ(n)(r) denotes a realistic nucleonic wave function
in the deformed potential and ϕN,nz,`z,sz

(r) the deformed
harmonic-oscillator basis wave function.

In fig. 2 we represent the typical single-particle
Routhian spectrum (here for the neutrons). The numbers
in curly brackets give the percentage of the leading Nils-
son label in the corresponding wave function (the maxi-

mum amplitude squared, |a(n)
N,nz,`z,sz

|2). The deformation
chosen is close to the calculated equilibrium deformation
as obtained with various models for the superdeformed
152Dy nucleus (cf., e.g., refs. [9,10]). One can see from the
right-hand side of the figure, corresponding to the large-
frequency limit, that over a half of the levels have the max-
imum Nilsson amplitude that does not exceed 15%, while
the other half does not exceed 25%. Let us recall at this
point that the harmonic-oscillator basis is forced to deform
in such a way that an optimum spatial overlap between
the basis potential and the studied potential is achieved.
In other words, the discussed small overlap between the
realistic wave functions and the harmonic-oscillator basis
wave functions is not related to the sphericity of h.o. ba-
sis, but rather reflects large structural differences between
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Fig. 2. The neutron single-particle levels as a function of the
rotational frequency. The results correspond to the superde-
formed nucleus 152Dy at the equilibrium deformation calcu-
lated using the deformed Woods-Saxon potential. The num-
bers in curly brackets give the percentages of validity of the
attached Nilsson labels.

the wave functions calculated with these two potentials,
much larger than what has been discussed so far.

As a result, since one should not expect any significant
overlap between the deformed harmonic oscillator and the
realistic-model wave functions at high spins and large de-
formations, important deviations between the harmonic-
oscillator–based predictions and those of the realistic mod-
els are to be expected. A particular consequence of that
fact is given as an example in the following section.

2.2 Inapplicability of the “2 : 1 Axis Ratio Criterion”

We often used to quote statements such as “the axis ratio
corresponding to a given superdeformed nucleus is close to
2 : 1”. Those statements are not confirmed by experiment
and are probably incorrect as commented below.

The microscopic calculations successfully predicting
as well as interpreting the detailed structure of the su-
perdeformed bands involve obviously the corresponding
equilibrium deformations (that may in general (slightly)
vary with spin). Similarly, the calculated multipole mo-
ments depend in a rather sensitive manner on the equilib-
rium deformations used, especially the quadrupole one.
For instance, the experimental result for the average
quadrupole moment in the superdeformed band in 152Dy,
Qt = 17.5(2) eb, ref. [8], is close to the microscopic calcu-
lation results at the equilibrium deformation of α20 ∼ 0.61
and α40 ∼ 0.1. The corresponding ratio of the semi-axes is

Rz/Rx = 1.72 (compare:
√
π = 1.772), (2)

and if anything, it is closer to
√
π than to 2. In the mass

range A ∼ 130 this geometrical axis ratio is even smaller:
Rz/Rx = 1.45 (compared to

√
2 ∼ 1.414). Of course both

numbers (
√
2 and

√
π) are cited here to emphasize a huge
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discrepancy between the measurement-justified values and
the (too often) incorrectly quoted ones.

Let us recall that according to one of the accepted
criteria, a nuclear configuration is called superdeformed
not so much according to the size of the observed axis ratio
but rather according to structural features such as the
presence (or not) of the intruder levels originating from the
“(N + 2)′-nd” main shell, where N denotes the principal
shell quantum number at spherical shapes.

2.3 Pseudo-SU3 symmetry and other discoveries

Despite the fact that the geometrical relations predicted
by the harmonic pseudo-oscillator cannot be used in de-
tailed analyses of experimental results, there remains a
precious common factor in comparisons between the re-
alistic nuclear mean-field calculations and the harmonic
pseudo-oscillator potential: both obey (under certain lim-
iting conditions) the pseudo-SU3 symmetry1. As a con-
sequence, the single-nucleon spectra resulting from the
pseudo-oscillator and from a realistic Hamiltonian have
similar degeneracy patterns as well as the clearly distin-
guishable correspondence of levels and energy gaps; how-
ever, the deformations at which analogous SD shell clo-
sures appear are different in both cases.

The harmonic oscillator obeys the SU3 symmetry ex-
actly, the pseudo-oscillator (cf. fig. 2 in ref. [2]) can be
treated as a certain phenomenological realization of the
SU3 symmetry while the realistic mean-field Hamiltoni-
ans obey the symmetry only approximately. The useful-
ness of this symmetry concept can be appreciated from
the prediction of chains (or series) of the SD gaps in the
single-particle spectra that can be considered experimen-
tally confirmed today but was not at all obvious when the
symmetry concept was first introduced.

While the very existence and some properties of the
superdeformed nuclei have been predicted by the theory
(e.g., the existence of the superdeformed-band structures
in over a dozen of the rare-earth nuclei has been foreseen
several years before their experimental discovery, ref. [11]),
some special properties were not. That is in particular true
in relation to the so-called “identical-band mechanism”,
ref. [12], and often discussed together with a mechanism
of the “quantized angular momentum alignment”. Here
we are not going to discuss these aspects; the reader is
referred, e.g., to [5] (cf. also, e.g., [13] and [14]).

Let us emphasize that a similar mechanism is expected
in the hyperdeformed nuclei as well (the corresponding
predictions are going to be published elsewhere).

Similarly, the additivity of the multipole moments was
a priori not an evident aspect (for a related discussion cf.,
e.g., ref. [10]).

1 It is perhaps worth to remind that the adjective “pseudo”
should not lead to any pejorative connotation. The so-called
pseudo-SU3 symmetry is from the point of view of mathematics
just another physical realization of the SU3 symmetry. This
name has been introduced merely to distinguish between the
physical realization of the SU3 symmetry introduced earlier
within the Elliot model and the one in the present context.
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Fig. 3. Semi-axis ratio (longer-to-shorter) along the liquid-
drop model minimum-energy path to fission for the 164Er nu-
cleus at spin zero. This curve can be seen as representing a
typical relation for many nuclei.

3 Hyperdeformation: physics motivations

We are going to recall briefly what, in our opinion, rep-
resents an important physics motivation(s) for the hyper-
deformation studies. Then, we will proceed to formulate a
number of observations that have accumulated during the
years of rather unsuccessful trying to observe the hyperde-
formed nuclei in the discrete transitions. (For some earlier
attempts in this experimentally very difficult domain, see
ref. [15].)

3.1 Definition of a hyperdeformed nucleus

Let us begin by formulating some comments related to
the very definition of the objects in question: how do we
define a hyperdeformed nucleus or, in other words, when
do we know that the hyperdeformation experiment has
been successful?

For a long while the arguments based on the semi-
axis ratios a : b = 2 : 1, for superdeformation, and
a : b = 3 : 1 for the hyperdeformation have been com-
monly used. They were based on the expected analogies
between the nuclear shell structure and that of the har-
monic oscillator —expectations that contradict the results
of the present-time experiments. Today we know, as re-
called in the preceding section, that even with hundreds of
large-deformation bands successfully identified, the “leg-
endary” 2 : 1 axis ratio has most likely not been observed
so far— and if so, then in a very few cases only.

In fig. 3 we show a typical semi-axis ratio curve valid
for many medium heavy and heavy nuclei. In the center
of the rare-earth region and in particular in the neighbor-
hood of the 152Dy nucleus the quadrupole deformations
are typically of the order of α20 ∼ 0.6 or less; in the cerium
and mercury regions, A ∼ 130 and A ∼ 180, respectively,
the quadrupole deformations vary typically between 0.4
and 0.5. Consequently, in most of the nuclear configura-
tions where the large deformations have been observed the
semi-axis ratio varies between 1.5 to 1.7.



18 The European Physical Journal A

The “legendary” 3 : 1 axis ratio corresponds to α20 ∼
1.4; if we use the liquid-drop model (for details see below)
by calculating the total nuclear energy as a function of
increasing α20 and letting several other deformations vary
(usually up to the multipole order λ ∼ 16 or more), we
can obtain a reasonable estimate of other deformations,
first of all α40. At the quadrupole deformation as quoted
above, the hexadecapole deformation may vary from 0.15
to 0.30 depending on the Z/N combination and on the
actual spin, but without modifying the axis ratio in any
important manner. What is commonly quoted in the liter-
ature as “hyperdeformation” corresponds very closely to
α20 ∼ 0.9–1.0; this type of hyperdeformed nucleus would
have axis ratio 2 : 1 as seen from fig. 3.

We thus can conclude that the “geometry-based” cri-
teria operating with the harmonic-oscillator properties
turned out to be very restrictive, since even the 152Dy su-
perdeformed band would not qualify for its “noble” name.

Another, nuclear-structure–based “definition” of the
hyperdeformation relies on the fact that the larger the
elongation the lower the energies of the “exotic” orbitals
that normally can be found only in the very high-lying
spherical shells. Some authors prefer to use the corre-
sponding criterion as less arbitrary: according to such a
definition the observed nuclear configuration will be called
hyperdeformed if there was at least one orbital occupied
that originates from the corresponding (N + 3)′-rd main
shell when extrapolating to the nucleus’s spherical shape.

Following rigorously this second criterion for the su-
perdeformed shapes (in this case (N + 3) → (N + 2)),
many nuclei called today superdeformed would loose their
characterizing adjective —we would need to call them just
strongly deformed.

On the one hand, it should be emphasized that we are
learning about many important, exotic properties of the
nuclear behavior associated with the strongly elongated
nuclei independently of the fact that they can/cannot be
qualified according to one of the definitions cited above.
On the other hand, the presence of the very exotic orbitals
originating from (N + n)-th shells does bring a very im-
portant particular information about the very high-lying
main shells; it may, e.g., allow for energy level extrapola-
tions into the continuum. The “definition” based on this
mechanism is less vague; the two definitions are of course
contradictory as discussed below.

3.2 Physics motivations

If found in nature, what will the hyperdeformed nuclei tell
us, possibly new and exotic, about the nuclear behavior
at the extreme conditions?

Since no single case has so far been observed in terms of
the discrete lines at high angular momenta, several ques-
tions should be raised. First of all: the theoretical calcu-
lations that predicted and interpreted quite consistently
a large body of experimentally known data related to su-
perdeformation, predict at the same time the existence of
much stronger-elongated shapes satisfying all the criteria
that would allow them to be called hyperdeformed. Why

should the transition: superdeformed → hyperdeformed
cause so much more restrictive demand on the instrumen-
tal sensitivity so that no identification has been possible
so far?

We believe that an important physical mechanism, re-
lated to the nuclear Jacobi transition [16] properties (see
below) has been systematically “overlooked” in the past in
many discussions related to searching for the hyperdefor-
mation and selecting the cases for the experiments. Thus,
it is not only the high instrumental sensitivity that is chal-
lenged but, at the present-day sensitivity, as we believe,
the choice of the reaction should be much more restrictive.
This will be discussed to a far extent below, so that here
we rather turn to the question: Suppose one or more hy-
perdeformed nuclei have been identified, what should we
(possibly) learn?

First of all the most evident: by measuring the hyper-
deformation (defined in terms of the second, more precise
definition of this term) we will be able to obtain very im-
portant information about the energy positions of the very
high ((N +3)′-rd) shells. This in itself is surely an impor-
tant achievement for high-precision future spectroscopic
studies, yet in itself could be qualified as a standard item
on the nuclear-structure agenda rather than “exotic” or
“unusual”.

A much more ambitious research program can be for-
mulated in relation to the (pseudo) SU3 symmetry in nu-
clei. Merely posing the very problem of existence or non-
existence of a generally present nuclear symmetry, even
if only approximate, is in itself a fundamental-research
question that is certainly worth addressing. The reader
could have noticed that on the basis of the superdeforma-
tion studies we have considered this question positively
answered: the (approximate) pseudo-SU3 symmetry has
been clearly confirmed by the discovery of the abundance
scheme of the superdeformed nuclei as predicted earlier by
theory. Why should hyperdeformation be any different?

It turns out that the shapes of most of the observed
superdeformed nuclei can be considered relatively “com-
pact”. By enforcing more and more elongation, we will
push the nuclei in question much closer towards fis-
sion/scission configurations thus encountering the con-
figurations in which a certain “pre-identification” of the
going-to-be fragments will become possible. The pseudo-
SU3 structure of the nearly formed fragments cannot co-
exist with the pseudo-SU3 structure of the same type seen
in the heavier, mother nuclei. This is because the pseudo-
SU3 multiplet degeneracies (2s+1) (Ñ − ñz +1) are very
different at a given N of the mother nucleus and ∼ N/2 in
the going-to-be fragment nuclei (cf. ref. [2]; also [17]). Con-
sequently, if we are able to observe the groups of neighbor-
ing hyperdeformed nuclei in accordance with the pseudo-
SU3 multiplet structure, cf., e.g., ref. [18], as it was the
case with the superdeformation, we will be able to decide
whether such a structure is still present on the way to fis-
sion in the range of α20 ∼ 1.0–1.5 and thus determine the
natural limits of applicability of this symmetry in nuclei.

There exists yet another fascinating physics motiva-
tion possibility that, even if difficult to identify today, is
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Fig. 4. When nuclei begin to form a “neck” the corresponding
nuclear potentials react quickly by building up a barrier (calcu-
lations show that this mechanism is much stronger than what
our intuition would typically tell us). In this type of shapes
the term “axis ratio” loses its meaning given the fact that the
neck radius tends to zero. (Strictly speaking there are up to six
different semi-axes that can be defined in such a system.) At
the same time, characteristic energy doublets (the large split-
ting here are out of proportion) are expected to emerge in a
rather broad energy range close to the Fermi level. (The nu-
clear surface represented above corresponds to α20 = 1.1 and
α40 = 0.11, superposed with a strong mass asymmetry.)

worth keeping in mind. When the nuclear elongation cor-
responding to the quadrupole deformation in the range of
α20 ∼ 1.1–1.5 is really approached, the necking will de-
velop, its size varying as a function of the nucleus and
spin. In particular, the strong mass asymmetry can be ex-
pected if one of the going-to-be fragments is doubly magic
(as 100Sn for example). These going-to-be fragments re-
lated to a hyperdeformed configuration can be considered
still strongly correlated; below, to simplify the language
we will call them “fragments” in short, in contrast to the
usual meaning of this word.

Single-particle energy “doublets” represented schemat-
ically in fig. 4 are not the energy doublets in the common
sense: the corresponding wave functions are strongly lo-
calized in only one of the two going-to-be fragments and
thus the discussed energy levels can be associated with one
fragment at the time only. A doubly magic fragment will
develop large spherical magic gaps; the other fragment will
have a deformed, degeneracy-free single-particle spectrum.
The presence of two, partially de-correlated single-particle
spectra in one single mother nucleus is an extremely in-
teresting physical situation as commented below.

Since the discussed elongations are so extreme (they
exceed the elongations associated, e.g., with the fission

isomers in the actinide nuclei by up to a factor of two),
the nuclear moments of inertia are huge and the implied
rotational frequencies —relatively very low— even at very
high angular momenta. The corresponding single-particle
wave functions are “deformation aligned” and the single-
particle Routhians nearly constant as a function of rota-
tional frequency, except for the highest-j smallest-Ω con-
tent orbitals that align their spins with the axis of rotation
directly at nearly vanishing frequencies.

As a result of the existence of two nearly de-correlated
single-nucleon spectra in one mother nucleus and because
of only relatively low rotational frequencies, the Corio-
lis (anti-pairing) mechanism will be strongly weakened.
In nuclei at these conditions one should expect a coex-
istence of the superfluid (deformed nucleus) and normal
(spherical nucleus) phases in a single finite system. This
seems to be a unique physical situation also compared to
the condensed-matter-physics standards. Its experimen-
tal manifestation could be analyzed in terms of model-
dependent calculations that would involve comparison of
the moments of inertia corresponding to a partly rigid
partly superfluid system. In particular, the single-nucleon
alignment properties promises to be very exotic: using the
standard (although particularly incorrect in the case of
hyperdeformation) convention of labeling the orbitals, an
m21/2 orbital corresponding to Ω = 1/2 projection, div-
ing under the Fermi level of a deformed fragment that
can carry at most, say, h9/2 orbitals, must undergo very
unusual and thus fascinating transformations. There is a
number of other appealing mechanisms that one may as-
sociate with those highly elongated systems; discussions
of the related mechanisms are presently at a very early
stage.

Let us mention that the “identical band mechanism”
is also expected to be present at hyperdeformed configura-
tions. In the case of the superdeformed nuclei, say A, and
A+1, the relative polarization in terms of the moments of
inertia, δJ/J (where δJ ≡ J(A+1)−J(A)) was predicted
to be a positive but decreasing function of the elongation,
reaching zero at α20 ∼ 0.6 for the nz = 0 orbitals. This
quantity is expected to be negative at the hyperdeforma-
tion and the orbitals with nz = 1 or 2 are expected to
give nearly zero polarizations. (The predictions quoted are
based on the mean-field calculations that employ the self-
consistency condition: its experimental verification will be
a precious message related to the self-consistency at the
extreme nuclear elongation.)

4 Possibly decisive role of Jacobi transitions

The successful series of experiments that over many years
has brought hundreds of superdeformed bands known to-
day was in a way “quite easy”: by reading the diagrams of
the calculated single-particle levels and by finding the cor-
responding superdeformed gaps predicted by theory, e.g.,
around 152Dy, we were able to obtain the experimental
information on nearly every bigger gap predicted. Let us
discuss this aspect in some more detail.
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Fig. 5. Single-particle neutron levels at large deformations
covering the super- and hyper-deformation ranges: here based
on the deformed Woods-Saxon potential. (The diagram is char-
acteristic for the relatively broad range of nuclei in the A ∼ 160
mass region, including 152Dy nucleus.)
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Fig. 6. Similar to the diagram in fig. 5 but for the protons.

4.1 Jacobi transition and super- and hyper-deformed
states in 152Dy

By inspecting the results in figs. 5 and 6 we can easily
verify that there is not a very large difference between the
gap sizes at the “traditionally” superdeformed and the hy-
perdeformed configurations. Similar conclusions hold for
the protons.

In order to better understand the possible reasons for
an “easy” success with the nucleus 152Dy, let us recall
that the high-spin nuclear states of interest in the present
discussion are typically populated in the heavy-ion x-n re-
actions that produce, at the early stages of the process,
highly excited compound nuclei with temperatures that
easily exceed T ∼ 1.0 MeV, a limit that according to
theory corresponds to the melting of the deformed-shell
structure. Consequently, we can learn about the behavior
of hot nuclei at this stage of the reaction by examining
the corresponding purely macroscopic-model energy. Such
an analysis will be performed using a new version of the
macroscopic model [19] called Lublin-Strasbourg Drop (re-
ferred to as LSD below).

We begin with the “standard” case: the nucleus 152Dy,
whose superdeformation, as well as the population prop-
erties, can be considered very well known. In particular,
the highest-spin discrete transition of the yrast band in
this nucleus corresponds to Imax ∼ 64~.

Jacobi transition

Results in fig. 7 indicate that the equilibrium deforma-
tion in hot 152Dy nucleus remains oblate and increases
to about β2 ∼ 0.28 (γ = 60◦) up to spin ∼ 68~. From
that value on, when spin increases, the equilibrium defor-
mation becomes triaxial and moves quickly towards high
elongations. That process does not mean any complete
loss of stability against fission, since the fission barriers
are still rather high. The transformation that leads from
oblate to triaxial and strongly elongated shapes when spin
increases (or, from the elongated, towards the oblate equi-
librium shapes when spin decreases) is usually called the
nuclear Jacobi transition [16].

Spin window

An important implication of the above result is that if
the 152Dy nucleus is populated at spins corresponding
roughly to the interval [70, 78]~ (below we call this in-
terval spin window), the corresponding population flux
must pass through the large-deformation states and thus
feeding of the superdeformation is the dominating popu-
lation channel —but only within this (relatively narrow)
spin window. Since the mother nuclei corresponding to,
e.g., a 4n reaction have similar spin window properties, we
may conclude that the spin difference between the lower
bound of the spin window and the spin associated to the
first discrete transition observed is ∼ 6–8~. This defines
an average angular-momentum escape per evaporated nu-
cleon ∼ 1.5–2~, the latter estimate being in agreement
with measurements for many other reactions in this nu-
clear range. We may expect that similar orders of mag-
nitude will be preserved by the neutron evaporation from
the hyperdeformed nuclei.

Neutron evaporation threshold

We have just emphasized the importance of the condition
of a sufficiently high fission barrier at zero temperature
and of the spin window related to the Jacobi transition;
for the population of a hyperdeformed nucleus of interest
it is of advantage if no further neutron evaporation is en-
ergetically possible. This condition is usually simplified by
saying that fission barriers higher than ∼ 8 MeV (a typical
order of magnitude for the neutron binding energy in the
mass range A ∼ 150–170) are not contributing strongly
to an increase in stability since the neutron evaporation
channel open will in general render the mother nucleus
not directly observable.
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Fig. 7. Total-energy calculations in terms of the standard (β − γ) deformations according to the LSD approach. At each spin
and deformation point the energy was minimized with respect to α40, α60 and α80. It has been verified by a direct comparison
with the full minimization variant of the code (whose results are presented and discussed also below) that these variables
are sufficient to draw the conclusions of interest here. Each map is normalized separately to zero at the respective minimum,
however, the true minimum energies (in MeV) are given in the boxes next to the spin values. Calculations correspond to the
152Dy nucleus that clearly undergoes the Jacobi transition beginning with critical spin Icr ∼ 68–72~. From that critical range
on, the equilibrium deformation moves quickly towards large elongations when spin increases, while the fission barrier, although
decreasing, remains relatively high —and the corresponding nucleus relatively stable— with respect to fission.

Double-hump inner barrier

One can see from fig. 5 that relatively large N = 86 gaps
exist not only at α20 ∼ 0.6, but also, after some level cross-
ing visible in the figure, at α20 ∼ 0.9. This second N = 86
gap has been discussed earlier in the literature and was
actually giving rise to the first mention of the hyperdefor-
mation2. From the results in fig. 9, sect. 4.3, one can see
that the minimum related to the α20 ∼ 0.9 deformation
persists down to spins I ∼ 50; yet the “left hyperdeformed
barrier” (as opposed to fission barrier) has a double-hump
structure with the deep superdeformed minimum lying to
the left.

This double-hump structure in the barrier is most
likely one of the reasons for the difficulties to observe
the hyperdeformation in 152Dy, mainly because the corre-

2 The possibility of the existence of the α20 ∼ 0.9 mini-
mum in addition to the α20 ∼ 0.6 minimum was discussed
by one of the authors (J.D.) at the 1987 Nuclear Chemistry

Gordon Conference; at that time it was referred to as “super-

superdeformed’. The name “hyperdeformation” was suggested
in the same context by Frank Stephens. The corresponding
energy landscape obtained from the early calculations of that
type has been adapted as one of the illustrations in the scien-
tific motivation document related to GAMMASPHERE.

sponding inner (left) barrier is, in relative terms, too small.
More precisely, since all the large-deformation nuclear con-
figurations are populated through the high-temperature
stage, the cooling of the nucleus during the neutron evapo-
ration process will cause the appearance of the deeper (su-
perdeformed) minimum much earlier i.e. at higher residual
temperatures, as compared to the hypothetical appear-
ance of the shallower (hyperdeformed) minimum. Conse-
quently, the high proportion of the population flux goes
most likely to the superdeformed minimum, leaving the
population rate of the hyperdeformed one beyond the to-
days instrumental sensitivity threshold.

The double-hump structure of the inner barriers is
most likely one of the slowing-down factors in the search
for the hyperdeformed minima in nuclei in which the
superdeformation has already been experimentally con-
firmed.

4.2 Hyperdeformed nuclei with and without Jacobi
transition

From the results in figs. 5 and 6 we may expect that any
combination of the proton numbers Z = 68 (70), 72–76
with the neutron numbers N = 94–100 suggests a good
candidate nucleus for the hyperdeformation studies. Such
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Fig. 8. The macroscopic-model calculations representative for the high-temperature nuclear behavior; here for 170Hf (top)
and 164Er (bottom). The almost immediate loss of stability against fission already at the oblate deformation and the almost
“instantaneous” Jacobi transition at fission barriers that are negligible make 170Hf a nucleus not of the first choice. In contrast,
the case of 164Er seems to have an advantage: the latter nucleus undergoes a Jacobi transition and the population of the large
deformations α20 ∼ 0.8–0.9 is likely since the fission barriers are markedly higher than zero in this case.

a statement would be based solely on the predictions re-
lated to the zero-temperature nuclear-stability condition
that in turn relies exclusively on the corresponding shell
closures. This “zero-temperature” criterion alone is not
sufficient, as the unsuccessful searches for some hyper-
deformed nuclei in the Er-Hf region have demonstrated.
Moreover, as the discussion following results in fig. 7 sug-
gests, it is most likely essential that the whole flux popu-
lating large-deformation states passes through the excited
large-deformation intermediate states first of all at the
high-temperature limit.

Comparison of the results in fig. 8 makes it clear that
out of two nuclei predicted to have hyperdeformed minima
at the zero-temperature limit, one may, and another one
may not, manifest the Jacobi transition. In particular, it
is seen from the figure that 164Er does undergo a Jacobi
transition and because of that should in principle be a
candidate for an experiment. Whether the 164Er barriers
seen in fig. 8 are sufficiently high is not quite clear as long
as no experimental confirmation exists but a similarity to
the results for the 152Dy case (cf. fig. 7) is suggestive.
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Fig. 9. Total-energy cuts using a new approach based on the
Strutinsky method with the Dirac single-particle potential and
the LSD macroscopic approach. The energy has been mini-
mized with respect to α40, α60 and α80 at each α20 value.

The results of the total-energy minimization seen in
fig. 8 correspond to the maximum multipole number λ=8;
with the number of multipoles extended up to λ = 14 the
barriers become of course slightly lowered as compared to
what one can read from the upper-right corners in the fig-
ure. In particular: for 164Er, these more exact calculations
give Bf(I = 68) = 10.1 MeV, Bf(I = 74) = 5.4 MeV and
Bf(I = 80) = 2.0 MeV; these heights correspond to the
deformations that are out of the range of the figure.

In reference to the 164Er example, let us mention that
by increasing the neutron number one will also increase
the fission barriers. This remark is important knowing that
the envisagable compound nuclei leading to the one in
question will necessarily have larger neutron numbers.

4.3 New microscopic calculations

The results discussed so far in this paper addressed prin-
cipally two aspects of the theory: the existence (or not)
of the deformed shell closures and the fission stability (or
instability) at the relatively high-temperature limit.
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Fig. 10. Similar to fig. 9 but for the nucleus 164Er. If this
nucleus survives the high-temperature regime, its shell effects
are predicted to be strong enough to produce relatively high
barriers, both against fission and the inner one, down to the
low-spin area. At the same time, the barriers do not have a
double-hump structure as in the case of 152Dy, fig. 9 (except
around I ∼ 70, where the yrast and the hyperdeformed mini-
mum have comparable energies).

The ultimate argument about the stability of a nucleus
is always based on the microscopic calculations that take
into account a sufficient number of the relevant degrees of
freedom and allow to estimate the behavior of the total
nuclear energy taking into account the quantum effects.

Here, we would like to present only a few examples of
such calculations (cf. figs. 9-10) and report briefly on the
new generation of the microscopic Strutinsky-type calcu-
lations that are based on the following elements.

Macroscopic energy

We have already mentioned the use of a new approach
based on the LSD method [19] when discussing the Jacobi
transitions. This improved approach allows to reproduce
the experimentally known nuclear masses with the record-
low r.m.s. deviations (cf. appendix). In addition, by tak-
ing into account the nuclear surface curvature effects, this
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new approach allows at the same time for an increased
precision in the fission barrier calculations. Both these el-
ements encouraged us to apply it in the new generation of
the Strutinsky calculations.

Mean field and its parameterization

In generating the single-particle Hamiltonian and energy
levels a new approach based on the Dirac formalism with
the deformed Woods-Saxon potentials has been developed.
The parameters of the Hamiltonian have been adjusted
to single-particle level positions in both spherical and de-
formed (“band heads”) nuclei, to known nucleonic bind-
ing energies as well as r.m.s. radii and charge densities.
We believe that by introducing the above up-to-date ex-
perimental information to the theoretical model we are
able to provide a powerful phenomenological tool for the
advanced large-scale calculations, ref. [20].

Pairing and the particle number projection

Within the hyperdeformed configurations and also at the
surrounding deformations the high-spin states are usually
characterized by a relatively low-frequency rotation. Con-
sequently, the pairing correlations are not necessarily neg-
ligible and in the present approach they are taken into
account “by default” using a particle number projection
technique within the Bogolyubov transformation formal-
ism.

Fast minimization algorithms

Usually, large-scale Strutinsky-type calculations have been
performed by using a mesh of deformation points. It is,
however, impossible to apply this technique in the case of
large number of deformations such as five or more because
of the computer limitations. In the case of high dimen-
sionalities of the deformation space it is more of advan-
tage to use directly the fast minimization routines that
make the Strutinsky method resemble the functioning of
the Hartree-Fock approaches.

Comparison of the results in figs. 9-10 shows that, con-
sistently with the single-particle diagram predictions in
figs. 5-6, the hyperdeformation in 164Er is larger (α20 ∼
1.0 compared to α20 ∼ 0.8 in the case of 152Dy). Both
barriers (i.e. the fission barrier and the inner barrier) in
164Er are comparable to those in 152Dy and the problem of
populating the hyperdeformation in the former case seems
to be related strongly to the possibility (or impossibility)
of reaching the narrow spin window of I ∼ 74–78~ in the
corresponding reaction (cf. fig. 8, bottom part) feeding the
164Er nucleus.

Finally, let us mention that the example of 164Er is
by no means the only one worth considering in this mass
range. However, what is worth emphasizing is the question
of the existence of the Jacobi transition in the mother
nucleus and in nuclei on the way to the final one during
the process of particle evaporation.

5 Nuclei in the mass range A ∼ 100–120

As is known from the fission barrier systematics, the nuclei
in the mass range A ∼ 100–120 are characterized by rela-
tively high barriers against fission and thus are expected
to withstand better, in particular the high-spin rotation.
An implication of such a property will be that, on the av-
erage, also larger deformations will be populated both in
the intermediate stages of the reaction and possibly in the
final one (if the shell structure conditions are favorable).

We begin by showing that in the discussed mass range
the deformed-shell effects may indeed stabilize the nuclei
at larger elongations which most likely opens new per-
spectives as argued below. It will be shown next that the
Jacobi transition mechanism favors the population of de-
formations approaching α20 ∼ 1.4.

5.1 New nuclear states that possibly need a new name

We arrive at a situation that can be summarized as fol-
lows. Only with the nuclei that are most stable against
fission we may hope to populate the α20 ∼ 1.4 deforma-
tions i.e. configurations with real3 axis ratio 3 : 1. It will
be instructive to study the corresponding shell structure
in some details as presented in fig. 11.

Let us consider as an example the nucleus 108Cd;
since its proton number satisfies 20 < Z = 48 < 50,
the corresponding main shell at spherical shapes is
Nπ

sph = 3 and according to the second definition of
the hyperdeformation that has been quoted earlier, the
associated hyperdeformed orbitals should originate from
the shell Nπ

sph = 6. Similarly, since the neutron number
in question satisfies 50 < N = 60 < 82, the corresponding
Nν

sph = 4 and the associated hyperdeformed orbitals
should originate from the shell N ν

sph = 7. Inspection of
fig. 11 indicates that there is at least one neutron orbital
originating from the spherical shell N ν

sph = 8 orbital

expected to be occupied (!) while at the proton number
Z = 49 there is also one proton orbital occupied that
originates from the shell Nπ

sph = 7 (!!).
Such a situation has not been foreseen by the defini-

tions of the hyperdeformation discussed earlier. One can
see that the physical situation implied by the present dis-
cussion exceeds the earlier expectations since the down-
sloping orbitals coming from the (Nsph + 4)-th shell were
not discussed so far —wherefrom the question of the pos-
sible name of the new structures4.

3 Since the reference to the axis ratios 2 : 1 and 3 : 1 has been
often confusing (e.g., the nuclei with α20 ∼ 0.9, traditionally
called “hyperdeformed —thus with the axis ratio 3 : 1” while
in reality the corresponding elongation barely makes for 2 : 1,
cf. fig. 3) we stress the fact that here we really mean it: the
deformation in question is α20 ∼ 1.4, thus corresponding to
the axis ratio 3 : 1.

4 We have pointed out in a few places of this article to the
conflicts associated with the unfortunate (mis)use of the axis
ratio terminology. However, there is yet another conflict related
to the names “superdeformation” and “hyperdeformation”



J. Dudek et al.: Hyperdeformed nuclei 25

.0 .2 .4 .6 .8 1.0 1.2 1.4

-12

-11

-10

-9

-8

-7

Rotational Frequency [MeV]

N
eu

tr
on

 R
ou

th
ia

ns
 [M

eV
]

55

56
58

60 61

66

[7,7,0] 1/2
[7,7,0] 1/2
[5,3,2] 5/2
[5,3,2] 5/2
[2,0,0] 1/2
[2,0,0] 1/2

[2,0,2] 3/2
[2,0,2] 3/2
[6,5,1] 1/2
[6,5,1] 1/2
[5,2,3] 7/2
[5,2,3] 7/2
[5,3,0] 1/2
[5,3,0] 1/2
[4,1,3] 7/2
[4,1,3] 7/2
[7,5,2] 3/2
[7,5,2] 3/2

[6,5,1] 1/2

[8,7,1] 1/2

[2,0,0] 1/2

[2,0,2] 3/2
[3,1,0] 1/2

[2,0,2] 3/2

[3,1,0] 1/2
[8,8,0] 1/2
[7,7,0] 1/2
[5,2,3] 7/2
[4,1,3] 7/2
[4,1,3] 7/2
[3,0,3] 7/2
[3,0,3] 7/2
[7,6,1] 3/2
[7,6,1] 3/2

108Cd  60 48

.0 .2 .4 .6 .8 1.0 1.2 1.4

-10

-9

-8

-7

-6

-5

-4

Rotational Frequency [MeV]

P
ro

to
n 

R
ou

th
ia

ns
 [M

eV
]

46

49

52

56
57

[4,2,2] 3/2
[4,2,2] 3/2
[3,1,2] 3/2
[3,1,2] 3/2
[7,6,1] 1/2
[7,6,1] 1/2

[2,0,2] 5/2
[2,0,2] 5/2
[6,5,1] 3/2
[6,5,1] 3/2
[7,7,0] 1/2
[7,7,0] 1/2

[5,3,2] 5/2
[5,3,2] 5/2
[2,0,0] 1/2
[2,0,0] 1/2

[3,1,2] 3/2

[6,4,2] 5/2
[6,4,2] 5/2
[7,7,0] 1/2

[7,7,0] 1/2
[2,0,2] 5/2
[2,0,2] 5/2

[2,0,0] 1/2
[6,5,1] 1/2
[3,1,2] 5/2
[3,1,2] 5/2
[8,7,1] 1/2

[3,1,0] 1/2
[2,0,0] 1/2
[2,0,2] 3/2

108Cd  60 48

Fig. 11. Single-particle Routhians at α20 = 1.4 and α40 = 0.3
appropriate for the real 3 : 1 axis ratio (see the text).

One possibility would be to continue using the nomen-
clature originating from the Greek by either using the
Greek word µεγασ (megas) for “great” —wherefrom
“megadeformed” for the exotic configurations discussed
above, or using the Greek word γιγασ (gigas) for “giant”,
wherefrom “gigadeformed” for the same. Since the scission
configurations of many nuclei correspond to α20 ∼ 4.0 (in
the fission barrier calculations extending to the nuclear
scission points the α20 deformation is accompanied by sev-
eral other non-zero multipoles) it would be safer to use the
word megadeformation for the hypothetical (Nsph +4)-th
shell configuration at α20 ∼ 1.4 (or the real 3 : 1 axis ra-
tio) and reserve the word gigadeformation for any possible
surprise when α20 → 4.0.

The nuclei corresponding to Nsph = 3 are predicted to
have the tendency to build up very strong hyperdeformed-
and/or megadeformed-shell effects as fig. 12 illustrates.
This tendency provides one more argument in favor of
investigating the nuclei in the corresponding mass range.

themselves. Actually, the word “super” is the Latin version
of the Greek preposition “hyper” (meaning “over” or “be-
yond”). Therefore, strictly speaking, the words “superdefor-
mation” and “hyperdeformation” can be seen to express the

same thing in two different languages [21].
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Fig. 12. Single-particle proton levels at the hyperdeformation
and or megadeformation region with proton number ∼ 40 nu-
clei. Huge shell effects (gaps that approach ∆E ∼ 3 MeV at
Z ∼ 46–48 at deformations α20 ∼ 1.2–1.4, thus the axis ratio
not far from 3 : 1, cf. fig. 3), deserve attention.

5.2 Slow Jacobi transitions in A ∼ 100–120 range

We would like to show that in the discussed mass range
the Jacobi transition mechanism indeed stabilizes the nu-
clei at larger elongations and most likely helps opening
new perspectives as argued in the preceding sections. As
can be seen from the results in fig. 13, deformations ap-
proaching α20 ∼ 1.4 could be fed while the fission barriers
are still considerably high. Moreover, the spin windows
corresponding to the transition in terms of the equilib-
rium deformations from γ = 60◦ down to fission are much
larger in the lighter nuclei discussed here as compared to
nuclei in the A ∼ 160 mass range discussed earlier in this
paper.

This large size of the spin window, referred to as a slow
Jacobi transition, is clearly a factor that facilitates think-
ing of a more efficient population of these exotic structures
by experiment. It is usually difficult to satisfy the high-
angular-momentum transfer condition when it is limited
to a very narrow spin window of a few ~ only, as it is
usually the case in the heavy-mass nuclei. We believe that
the presence of the very narrow spin window that implies
such a restrictive population conditions was “overlooked”
at least in some experimental attempts undertaken so far
in this domain.

Moreover, with the nuclear deformation range that ap-
proaches experimentally the real 3 : 1 axis ratio configu-
rations, the giant-dipole resonance radiation should move
considerably low in energy, the 4–6 MeV interval for its
lower shoulder being the range to think of. This may imply
that experiments prepared for the high-energy gamma-ray
analysis will have a better chance to observe the huge de-
formations —if not through discrete— through continuous
electromagnetic transitions.

Last but not least, with the real 3 : 1 axis ratio configu-
rations populated the asymmetry in the Coulomb barriers
should clearly favor the proton emission from the “tips
of the nuclear cigar” and the use of the charged-particle
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Fig. 13. The Jacobi transition representations for 108Cd and 126Ba nuclei. The former has recently been studied, ref. [22], the
latter will be studied shortly within the EUROBALL Collaboration, ref. [23].

auxiliary detectors (if possible as a routine) may increase
the chances of enhancement of the processes that for many
years remained so difficult to observe.

We may conclude that the population of very large
deformations in hot nuclei in the mass range A ∼ 100–
120, a prerequisite when searching for the hyperdeformed
(and perhaps megadeformed) nuclear configurations in
this mass range should be enhanced owing to the particu-
larly extended form of the Jacobi transitions as predicted
for the nuclei in question.

5.3 Nuclei in the vicinity of barium

Below we are going to illustrate some theoretical results
for the 126Ba nucleus that was receiving recently a sig-

nificant attention within the EUROBALL Collaboration.
This nucleus is expected to undergo a Jacobi instability
that extends over a relatively broad range of spins and
thus should be considered as a good candidate for the
gigantic back-bending and possibly also for the hyperde-
formation studies.

The shell effects examined systematically in the ear-
lier calculations such as ref. [24] indicate that the strong
hyperdeformed-shell closures in rotating nuclei are to be
expected in medium heavy (A ∼ 160) and heavy (A ∼
180–210) nuclei. Those early calculations did not give any
special indication for the particularly strong hyperdefor-
mation shell effects in the lighter-mass nuclei, but they
were based on the relatively limited deformation space,
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Fig. 14. Similar to fig. 9 but for the nucleus 126Ba; cf. also
pure LSD energy minimization curves in fig. 15.

so that revisiting this nuclear range with more sophis-
ticated theoretical means seems appropriate. Results in
fig. 14 obtained as previously by minimizing the total nu-
clear energy at each quadrupole deformation over α40, α60

and α80, indicate that a large-deformation minimum may
build up at the spin range I ∼ 60–80; such a minimum,
if populated, should give rise to about a dozen of discrete
quadrupole transitions.

6 Conclusions: possibly setting new priorities

We have studied and discussed the possibilities of pop-
ulating and observing the nuclear states with very large
deformations at high spins. We have presented a selec-
tion of expected properties of the hyperdeformed nuclei
and compared them, when possible, to the corresponding
properties of the superdeformed ones.

We believe that the fact that some hot nuclei fission
starting directly from the relatively small oblate equilib-
rium deformations was an important hindering factor at
least in some experimental searches for the hyperdeformed
nuclei in the A ∼ 160 mass range. In contrast, some other
nuclei in the same mass range may undergo the Jacobi

transition, remain strongly deformed and at the same time
relatively stable against fission. These nuclei are expected
to be the candidates for hopefully more successful obser-
vation of the very large-deformation shapes. Although the
existence of the Jacobi transition mechanism in nuclei has
been known for a long time, to our knowledge, it has of-
ten not been taken into account when selecting the beam-
target combinations for the experimental tests.

On the basis of the nuclear Jacobi instability proper-
ties in various mass ranges we have formulated a sugges-
tion that hyperdeformed nuclei, whose nucleons occupy
the orbitals from the (Nsph + 3)-rd, shell may not be the
last ones on the large-deformation search agenda. Accord-
ing to theory, the nuclei in, e.g., the A ∼ 100 range seem
to satisfy three important criteria:

1) They manifest strong shell gaps of about 3 MeV (!) at
deformations of α20 ∼ 1.2–1.4.

2) They follow a slow Jacobi transition that favors pop-
ulating the corresponding structures at high tempera-
tures and simultaneously at relatively broad spin win-
dow.

3) Some nucleons there may occupy the orbitals originat-
ing from the spherical (Nsph+4)-th shell —thus giving
rise to the possible megadeformed states.

On the one hand, it may not sound very realistic sug-
gesting a search for the megadeformation knowing that
no hyperdeformed nucleus has been seen in discrete tran-
sitions so far. On the other hand, it is not true that
the search difficulties increase proportionally to the nu-
clear elongation. In fact, what is needed are sufficiently
“strong” potential barriers against fission and simultane-
ously against the return to the weaker-deformed config-
urations. Such conditions are not necessarily correlated
with the actual size of the deformation in question; there
may generally appear groups of megadeformed nuclei that
are more stable than a group of the theoretically predicted
hyperdeformed ones. (At present, we are studying such a
possibility in more detail by performing microscopic cal-
culations, but a precise comparison is not available to us
at this time).

On the average, the shell effects corresponding to
hyper- or mega-deformed shapes are for various reasons
weaker than those at the superdeformed shapes. One of
them is that the onset of the narrow-neck configurations
may cause the disappearance of the pseudo-SU3 multiplet
structure that is known to help stabilizing the superde-
formed shapes. Consequently, it may be an easier tactics
to optimise the experiments for the continuous gamma-
radiation searches for the hyperdeformed states rather
than attempting the discrete-line studies by all means.

Moreover, the huge elongations in question must leave
traces in terms of the low-energy shoulders of the giant
resonances and at the same time in terms of the enhanced
proton emission from the nuclear tips. This implies once
again that the continuum gamma-ray studies combined
with the detection of the light-particle emission may bring
a successful identification of the hyperdeformed nuclei via
the giant-resonance mechanism and/or a gigantic back-
bending mechanism in the continuum rather than a direct
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observation of the equidistant gamma-rays that resemble
the well-known superdeformation spectra.

Finally, let us mention that we have undertaken an ef-
fort trying to remove a confusion that has accumulated
over the years in relation to the incorrect use of the so-
called 2 : 1 and 3 : 1 axis ratio arguments/criteria. These
arguments have been originally introduced on the basis
of the harmonic-oscillator properties but were not con-
firmed by experiment. In particular, the superdeformed
nuclei in the 152Dy region that are characterized by the de-
formations α20 ∼ 0.6 and α40 ∼ 0.1 (or smaller) have the
longer-to-shorter axis ratios of the order of 1.7. The nuclei
expected to have α20 ∼ 0.9 and traditionally referred to
as hyperdeformed have, in reality, the corresponding axis
ratio 2 : 1.

On the occasion of this discussion, a more consistent
way of naming the highly elongated nuclear configurations
has been proposed.

Work supported in part by the Polish Committee for Scientific
Research (KBN), grant No. 2 P03B 115 19, and by the Scien-
tific Exchange Programme between IN2P3, France, and Polish
Nuclear Physics Laboratories.

Appendix A. Liquid-drop mass formula with
curvature term (LSD method)

The nuclear Liquid-Drop Model (LDM) was recently re-
visited, ref. [19]. The point the most relevant in the con-
text of the present article consisted in extending the LDM
of Myers and Świa̧tecki by adding the surface curvature
term. Earlier in the text this extended version of the model
has been referred to as Lublin-Strasbourg Drop (LSD) ap-
proach.

According to the usual rules of the macroscopic energy
models the LSD energy expression assumes that the mass
of an atom with Z protons, Z electrons and N neutrons
is described by the relation (cf. refs. [25,26]):

M(Z,N ; def) = ZMH +NMn − 0.00001433Z2.39

+ bvol (1− κvol I
2 )A

+ bsurf (1− κsurfI
2 )A2/3Bsurf(def)

+ bcur (1− κcur I
2 )A1/3Bcur(def)

+
3

5
e2

Z2

rch0 A
1/3

BCoul(def)− C4
Z2

A

+ Emicr(Z,N ; def) + Econg(Z,N) , (A.1)

where
Emicr = Epair + Eshell (A.2)

is the sum of the microscopic shell and pairing energies,
while the terms proportional to Z2.39 and to Z2/A de-
scribe, on the average, the binding energy of electrons and
the correction due to the surface diffuseness of the charge
distribution, respectively. The LSD energy expression con-
tains the congruence energy according to ref. [26]:

Econg = −10MeV · exp(−42 |I|/10) . (A.3)
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Fig. 15. The macroscopic energy according to the LSD ap-
proach minimized with respect to γ-deformation and the α40-
to-α14,0 even-multipolarity deformations at each quadrupole-
deformation point as a function of the path length on the
(β, γ)-plane for 126Ba (left). The trajectories connecting the
lowest-energy points at the oblate deformation, i.e. at γ = 60◦

and the scission points are shown in the upper-right-corner
diagram. The rotational energies corresponding to the estima-

tion Eγ = ~
2

2J
[4I + 6] calculated along each trajectory at spins

I = 16, 32, 40, 48, . . . 96 are shown in the lower-right-corner
diagram.

The parameters of the LSD model were fitted to the
2766 known experimental masses, ref. [27], of nuclei with
Z > 8 and N > 8 with the result

bvol = −15.4920 MeV

κvol = 1.8601,

bsurf = 16.9707 MeV,

κsurf = 2.2938,

bcur = 3.8602 MeV,

κcur = −2.3764,

rch0 = 1.21725 fm,

C4 = 0.9181 MeV.

The resulting mean square deviation for the binding
energies 〈δB〉 = 0.698 MeV, while for the fission barri-
ers 〈δVB〉 = 0.88 MeV when the data for four nuclei with
A < 100 are disregarded (the published results on the
experimentally established fission barriers concern about
40 nuclei). These four nuclei, for details see ref. [19], pose
difficulties to all models; the difficulties in question are
attributed to the congruence effects that, however, escape
the framework of the liquid-drop model. The traditional
(i.e. without the curvature terms) liquid-drop model en-
ergy expression with the parameters adjusted to the ex-
perimental masses only, reproduces well the masses but
gives fission barrier heights about 3 to 15 MeV higher
than their measured values [19].

Within the LSD formulation no additional fit to the
fission barriers has been performed; a very good descrip-
tion of the experimental fission barriers within the model
obtained by fitting the masses only signifies an inner
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consistency of the whole approach. In fact, the exper-
imental binding energies and the fission barrier heights
are reproduced with an accuracy comparable to or better
than the Thomas-Fermi model of ref. [26], or the HF+BCS
model with Skyrme forces of ref. [28].

Finally, it has been verified that the LSD approach
offers a very high stability in terms of the extrapolation
from the narrower range of nuclides to a more extended
one —a property of particular interest when the informa-
tion concerning unknown nuclei is sought.

We limit the illustration of the LSD calculation results
to an overview of the high-spin behavior of the 126Ba nu-
cleus corresponding to the minimization of the LSD model
energies over the even-λ multipole deformations αλ0 up to
λmax = 14, fig. 15. It can be seen from the figure that ac-
cording to the calculations the Jacobi transition begins
at I ∼ 70~ while the fission barrier disappears about
I = 88~. The corresponding minimum-energy trajecto-
ries connecting the minimum-energy points at an oblate
deformation axis and the scission points are shown in the
upper-right inset. The gamma-transitions energy at the
spin values indicated, calculated along the same trajecto-
ries, are shown in the lower-right inset. We do hope that
this information could be soon verified against the experi-
mental results on 126Ba obtained within the EUROBALL
Collaboration.

Recently, another application of the LSD calculations
to the 46Ti study of large deformations and the giant-
resonance features has turned out to be encouraging [29].
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